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Statistics of lattice animals 
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t Department of Mathematics, York University, North York, Ontario, Canada M3J 1P3 
f Department of Chemistry, University of Toronto, Toronto, Ontario, Canada MSS 1Al 

Received 27 June 1988 

Abstract. We investigate the large-n behaviour of the number of lattice animals with n 
vertices having a cycles per vertex. We prove concavity and continuity properties for the 
corresponding growth constant and, in particular, show that lattice trees are exponentially 
scarce in the set of lattice animals. We also consider the corresponding generating function 
and prove a number of theorems which bound it and set other limits on its possible 
behaviour. 

1. Introduction 

In the same way that self-avoiding walks have become a standard model of excluded- 
volume effects in linear polymers in dilute solution, lattice animals are now an accepted 
model of excluded-volume effects in branched polymers. Although lattice animals had 
previously been studied in the mathematical literature (see, e.g., Klarner 1967) they 
were first seriously considered as a model of polymers by Lubensky and Isaacson 
(1979). A lattice animal is a connected subgraph of the lattice and we write a, for the 
number of animals (up to translation) with n vertices. For the square lattice, it is easy 
to see that a, = 1, a, = 2, a3 = 6, a4 = 23, etc. We can also consider the number of trees 
with n vertices, a,(O), which are the subset of animals having no cycles. Again, for 
the square lattice, a,(O) = 1, a,(O) = 2, a3(0) = 6, a4(0)  = 22, etc (see, e.g., Whittington 
et a2 (1983) for more extensive tables). We can generalise this by defining the number 
of c animals, a,(c), to be the number of animals with n vertices and cyclomatic index 
c, so that 

a,= c a,(c). (1.1) 
c z o  

(The cyclomatic index is the number of independent cycles; it is the maximum number 
of edges that can be removed without disconnecting the animal.) 

In the absence of a pleasing expression for a, or for a,(c) there is some interest 
in determining the asymptotic behaviour for large n. Following Klarner (1967) it can 
be shown that 

O <  lim n-' log a, =sup n- l  log a, =log A <CO (1.2) 
n>O n-m 

and Klein (1981) used similar concatenation arguments to show that 

O <  lim n-'loga,(0)=supn-'loga,(O)~logAo~co. (1.3) 
n > O  n-m 

One can derive bounds on a,(c) in terms of a,(O), on the d-dimensional hypercubic 
lattice, and the best such bounds which have appeared are 

a , ( c ) s  (2dn)'an(0) (1.4) 
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for c a  1 and all n (Whittington et al 1983), and 

for some positive constant A and for all positive E less than a positive constant ~ ~ / 5 ,  
and n sufficiently large (Soteros and Whittington 1988). These bounds imply that 

lim n-' log an ( c )  = log A. (1.6) 
n-m 

for all c, where the limit is taken with c fixed. One can also use equations (1.4) and 
(1.5) to derive results on the critical exponents for c animals (Soteros and Whittington 
1988). 

Equation (1.6) is concerned with the number of c animals with c fixed, and so with 
the number of cycles per vertex equal to zero in the n +CO limit. We can also consider 
the number of animals, a , ( a ,  s ) ,  with n vertices, having at most LanJ cycles. We use 
1x1 to mean the largest integer less than or equal to x and we use 1x1 to mean the 
smallest integer greater than or equal to x. As n + 00 the maximum allowed number 
of cycles per vertex is a, which can be greater than zero. We shall show that 

lim n- ' loga,(a ,  ~ ) = l o g ~ ( a )  (1.7) 
n-m 

exists, that A ( a )  is a log concave function of a in [0, d - l), and is continuous in this 
interval. In particular limm+o A ( a )  = Ao.  

The values of A. and A have been estimated numerically (Gaunt 1980, Gaunt et al 
1982). These estimates are 

A o =  5.14i0.01 

A =5.210*0.006 ( d  = 2 )  

A. = 10.53 0.07 

A = 10.62 * 0.08 ( d  = 3). 

On the basis of these numerical results and an expansion in inverse powers of the 
dimension ( d ) ,  Gaunt et al conjectured that 

A,< A. (1.8) 
We give a rigorous proof of this result. 

By improving some results on the numbers of trees (Soteros and Whittington 1988) 
we derive bounds on the a dependence of A ( a )  which are sharp for small values of 
a. This is a regime which is difficult to investigate by standard numerical techniques. 

If + ( a )  a,( [an] )""  then 

+ ( a )  = A ( a )  (1.9) 

a. = sup{ a IA ( a )  < A (a)}. (1.10) 
for a s ao,  where 

For a c ao,  A ( a )  and C$( a )  yield equivalent information but, beyond ao,  the study 
of + ( a )  is more informative. We show that + ( a )  is log concave and continuous, that 
its derivative is infinite at the endpoints of the interval [0, d - l),  and that aOQ ( d  - 1)/2. 

Lubensky and Isaacson (1979) focused on the z transforms 
A f l ( z )  =c afl(c)zC (1.11) 

c 
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where z plays the role of a cycle fugacity. We prove a corresponding set of results 
about the limit 

log A( z) = lim n-l  log A,, (z) (1.12) 
n-ce 

and derive bounds on A(z) .  We show that A(z)  and 4 ( a )  are connected through the 
Legendre transform 

log A ( z ) =  sup (log q5(a)+a log z). 
O s a r d - 1  

(1.13) 

2. General properties of A ( & )  

This section is concerned with investigating the functional form of A ( a ) ,  as defined 
in equation (1.7). In particular we prove that 

On the d-dimensional hypercubic lattice a vertex has coordinates ( x l  , x 2 ,  . . . , x d ) .  

We shall need two definitions. For any set So of vertices we define the top (bottom) 
vertex as follows. First construct the subset SI c So such that the coordinate x l  of 
every vertex in S ,  has the maximum (minimum) value over all vertices in S o .  We then 
recursively construct S,  c such that the coordinate x k  of every vertex in Sk has 
the maximum (minimum) value over all vertices in Sk-l.  Let j be the smallest integer 
such that S, contains precisely one vertex, and call this vertex t ( b ) ,  the top (bottom) 
vertex of So. 

A ( a )  = A. < A. 

Lemma 2.1. For an animal with n vertices on the d-dimensional hypercubic lattice 
the cyclomatic index c satisfies the inequality c < n(d - 1 ) .  For each n, define c,,,( n) = 
max{c: a , ( c )  > 0); then limn+m c , , , ( n ) / n  = d - 1. 

Proof: If a connected graph has n vertices and e edges the cyclomatic index c is given 
by (e.g. Berge 1962) 

c = e - n + l .  (2.1) 

Since the coordination number of a d-dimensional hypercubic lattice is 2d, the number 
of edges incident on a vertex is at most 2d. In addition, every animal has a top and 
a bottom vertex and those vertices can have maximum degree (2d -2). Each edge is 
incident on two vertices so that 

2 e ~ 2 d ( n - 2 ) + 2 ( 2 d - 2 ) .  (2.2) 

Equations (2.1) and (2.2) give 

c < ( d - 1 ) n - 1 .  (2.3) 

Hence, a , ( c ) = O  if cZ-n(d-1) .  

Since n 3 md, there exists an animal having n vertices including all of the vertices 
{ ( x l ,  . . . , x d ) :  1 s xi s m, i = 1, . . . , d }  as well as all of the edges connecting nearest 
neighbours. Then this animal has at least ( m  - l ) d d  edges, so it has at least ( m  - l ) d d  - 
n + 1 cycles. Therefore c,,,( n )  3 ( nl'd - 2)dd - n + 1 .  The lemma now follows. 

S i n c e c S n ( d - l ) - l , c , , , ( n ) / n < d - l .  Foralowerbound,let m = m ( n ) =  

Lemma 2.2. The limit limH+% 
a for O a a < d - 1 .  

log a,,(a, 4)  exists and is a log concave function of 
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ProoJ: Consider an animal with n, vertices, and at most a l n l  cycles. This animal can 
be concatenated with an animal having n2 vertices and at most a2n2 cycles by translating 
the animals so that the top vertex of the first animal is one lattice space in the x, 
direction below the bottom vertex of the second animal. If these two vertices are 
joined by an edge, the resulting animal has n, + n2 vertices and at most alnl + a2n2 
cycles. Since each pair of animals can be concatenated in this way to form a distinct 
animal, we have 

an,(al ,  s)an2(a2, s afl,+fl,[(a1n1 + a z n z ) / ( n , +  S I .  (2.4) 

an,(&, s)%,b, s ) s  a n , + n * ( a ,  (2.5) 

a,(a, s ) c u ,  (2.6) 

If we set a1 = a2 = a this gives 

This, together with the fact that 

and U!,'" is bounded above (as in Klarner 1967), gives the existence of the limit 

n-m lim ~ ~ - ~ l o g a , ( a ,  s ) = l o g A ( a ) .  (2.7) 

Now put n, = n,= n in equation (2.4). This gives 

Since A ( a )  is a bounded non-decreasing function of a then equation (2.9) implies 
that A ( & )  is a log concave function of a for a E [0, d - 1)  (Hardy et al 1934, § 3.18). 

Lemma 2.3. 

and therefore 

cka,( c + k )  s [ ( d  - 1)nlka, ( c), 

Also, if ( d  - 1)/2 s c1 6 c2 s cmaX( n), then 

(2.10) 

(2.11) 

ProoJ: Let b, (c, c + k )  be the number of pairs of animals {g, (c), g, (c  + k ) }  such that 
g,(c) has n vertices and c cycles, g,( c +  k )  has the same n vertices and c +  k cycles 
and includes all the edges of g , ( c ) .  An animal with c +  k cycles has at least one set 
of c +  k edges which can be simultaneously deleted to yield a connected graph. We 
pick one such set of c + k edges and we can then choose to remove k of these in ( c : k )  

ways, yielding an animal with n vertices and c cycles, so that 

b , ( c , c + k ) s - (  c + k  ) a , ( c + k ) .  
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For each g , ( c )  we now seek an upper bound on the number of associated graphs 
g , ( c  + k). Since any animal with n vertices can have at most n ( d  - 1)  - 1 cycles (lemma 
2.1) there are at most [ n ( d  - 1 )  - 13 - c edges which can be added, and we choose to 
add k of these to form k additional cycles. These k edges can be chosen in at most 
( ( d - l ) k n - c - l )  ways so that 

(2.14) 

Then equations (2.13) and (2.14) imply equation (2.10). Equations (2.11) and (2.12) 
follow easily from equation (2.10). 

Lemma 2.4. 

lim n-' log( inn) = a  log a - b log b - ( a - b )  log(a -6).  
n-m 

Pro05 The bound 

n log n - n <log n !  < ( n  + 1 )  log(n + 1 )  - n 

(see Feller 1950) is sufficient to give the result in (2.15). 

(2.15) 

(2.16) 

Theorem 1. log A ( a )  is continuous for 0 s a < d - 1 .  

Prooj Since logA(a)  is a non-decreasing concave function of a in [0, d-1)  it is 
continuous in (0, d - 1 ) .  Hence we need only establish continuity at a = 0. We do this 
using the upper bound (2.10), with c = 0. We have 

k = O  

provided that LanJ s [ ( d  - 1)n - 1]/2. So for a small enough 

( d - 1 ) n - 1  
log(  LanJ ) l ogA(a )=  lim n - ' l o g a n ( a , ~ ) s l o g A o + l i m  n-l  

n-m n-rm 

(2.17) 

(2.18) 

and by lemma 2.4 

log A ( a )  log A o +  ( d  - 1 )  log(d - 1 )  - (CY)  log(a) - [(d - 1)  - a ]  10g[(d - 1 )  - CY]. 
(2.19) 

Then letting a -+ O+ gives 

lim logA(a)=logAo.  (2.20) 
a - O +  
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Theorem 2. A > A o .  

Proof. For this proof we obtain a lower bound on log A ( a )  using the lower bound in 
equation (1.5). We have, for n sufficiently large, 

2- 121 . (&(n-k))  an - ( 0)3 -k  
k = O  k 

(2.21) 

provided that a < [ ~ / ( 1 +  E ) ]  and E < e 0 / 5 .  Hence 

log A ( a )  = lim n-l log an(a ,  s )  
n - m  

3 E ( l  - a )  log E ( l  - a ) - a  log a 

and thus 

(2.23) 

The first term on the right-hand side of equation (2.23) is always positive and the 
second is positive for a such that O<a <e/ (1+3Ao+&).  Hence there exists a>O 
such that log A ( a )  > log A o .  Since A ( a )  is non-decreasing and bounded above by 
A, A > A. and theorem 2 is proved. 

3. A lower bound on A(a) 

Equation (2.19) gives an upper bound on A ( a )  when a is small. In this section we 
derive a corresponding lower bound on A ( a ) .  The strategy is to make use of (2.23) 
by finding a lower bound on c0. This involves sharpening an upper bound on the 
number of trees derived by Soteros and Whittington (1988) (their equation (2.10)). 
We define t,,(a, S )  to be the number of trees with n vertices containing at most an 
vertices of degree greater than 2, and 

(3.1) log Ao(a)  = lim n-' log tn(a,  <) 
n-as 

(where the limit is known to exist (Lipson and Whittington 1983)). The expected 
behaviour (using the results of Soteros and Whittington (1988)) of Ao(a)  is shown in 
figure 1. so is the smallest value of a at which Ao(a)  = A,( 1) = A o .  We derive an upper 
bound on Ao(a), sketched as the long broken curve in figure 1, and establish the point 
at which this bound meets a lower bound on A o ,  derived by Whittington and Gaunt 
(1978), the horizontal broken line. The value of a at which these bounds meet, a = E * ,  

is a lower bound on so. 
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Figure 1. Expected behaviour of A,((Y). The long broken curve represents an upper bound 
on h,(cu) and the horizontal broken line represents a lower bound on the value of A,. E *  

is then a lower bound on E ~ .  

Let u , ( a )  be the number of trees with n vertices having at most an vertices of 
degree not equal to 2.  For a tree on a d-dimensional hypercubic lattice we can define 
ni, with 1 s i s 2d, to be the number of vertices having degree i. Hence for 0 s a s 
[ 1 / ( 2 d  - 1 ) ] - [ 2 / n ( 2 d - l ) ]  

tn(a,  S ) S  u f l [ ( 2 d - l ) a + 2 / n ]  ( 3 . 2 )  

since 

Using equations (3.1) and (3 .2)  an upper bound on u n [ ( 2 d  - l ) a  + 2 / n ]  will lead to 
an upper bound on &(a) .  

To obtain an upper bound on u n [ ( 2 d  - l ) a  + 2 / n ]  we need to define an ordering 
of the branches and branch points of a tree, T, having b vertices of degree not equal 
to 2 on the d-dimensional hypercubic lattice. We do this by considering the abstract 
homeomorphically irreducible tree, T, having b vertices, which is associated with the 
lattice tree, T. By abstract we mean that T is a tree, in the graph theoretic sense, which 
is not embedded in any space. For T we define the following ordering of its branches 
and branch points (there are b - n, branch points). First note that the vertices of the 
tree can be ranked according to degree (and, in case of ambiguity, sums of degrees of 
adjacent vertices, see Bersohn (1978)). Using this ranking, we choose a vertex of 
highest rank (there can be equivalently ranked vertices using this ranking) to be the 
first vertex. The second vertex is chosen to be a vertex having highest rank among 
those vertices adjacent to the first vertex. The first branch is the branch connecting 
the first vertex to the second vertex. The remaining vertices adjacent to the first vertex 
are ordered sequentially according to their ranking. The branches connecting these 
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vertices to the first vertex are also ordered sequentially following the same order. The 
ordering process continues from the vertices adjacent to the second vertex and the 
process ends when all b - n,  branch points and b - 1 branches are ordered. There is 
more than one such ordering of the branches and branch points of T so we fix one 
ordering for each T. Thus for any lattice tree T we use the ordering of the branches 
and branch points of the associated abstract homeomorphically irreducible tree T to 
order the branches and branch points of T. In particular we can talk about the number 
of steps in each of the b - 1 branches of T as m ,  , m 2 ,  . . . , m b - l ,  respectively. 

Let tA(ml, m 2 , .  . . , mb-1) be the number of n-vertex lattice trees T having b -  1 
branches containing m, , m2,  . . . , mb-l steps respectively, such that T is associated 
with the abstract homeomorphically irreducible tree on b vertices, T. Then we have 
the following lemma. 

Lemma 3.1 

where f (  mk) is the number of self-avoiding walks with ink steps on the d-dimensional 
hypercubic lattice and ni is the number of vertices of degree i in the tree T. 

Proof: We can bound tA(ml ,  in2 , .  . . , mb-1) above by the number of ways of embedding 
branches independently in the lattice, in the order defined for T,  so that the branches 
have the correct lengths m , ,  m2,.  . . , mb-1. The number of ways of embedding the 
first branch is bounded above by f (  ml). For the remaining ( i  - 1) branches ( i  is the 
degree of the branch point) connected to the first branch there are (2d - 1)!/(2d - i)! 
ways to choose their first steps. The number of ways to embed any one of these 
branches, where the first step is fixed, is bounded above by f( mk)/2d, where mk is the 
number of steps in the branch. At the next (according to the order defined for T )  

branch point a similar bound results since again one of its branches has already been 
embedded and there are (2d - 1)!/(2d - i ) !  choices for the first steps of the remaining 
( i -  1) branches. Multiplying together the bounds calculated in this manner at each 
branch point gives the bound in equation (3.4). 

Lemma 3.2. 

for constants B > 0 and 8 < 1. The summation over j is a sum over the number of 
ways of distributing n - 1 edges amongst the b - 1 branches of the tree with at least 
one edge per branch, m j , ,  mj2,. . . , m j ( b - I )  are the number of edges in each branch 
respectively for the j th  way of distributing the edges. 

Proof: 
P n  

' U n ( P ) =  c tA(ml,m2,-**,mb-l)  (3.6) 
b = 2  T ml,m2 .._.. mh-,  

where the summation over T is a sum over all abstract homeomorphically irreducible 
trees on b vertices. The third sum is over all possible choices of m , ,  m 2 , .  . . , % - I ,  

the lengths of the branches. 
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Since the right-hand side of equation (3.4) is independent of T we can use equation 
(3.4) and equation (3.6) to give 

(3.7) 

where H (  b )  is the number of abstract (unlabelled) homeomorphically irreducible trees 
on b vertices. 

Since there are (E::) ways to distribute the n - 1 edges amongst the b - 1 branches 
of the tree with at least one edge in every branch and hence (;I:) choices for 
m , ,  m 2 , .  . . , mb-l  we can rewrite the right-hand side of equation (3.7) to give 

where m j , ,  m j 2 , .  . . , m j ( b - I )  are the number of edges in each branch respectively for 
the j t h  way of distributing the edges. 

From Harary et al (1975) and Harary and Prins (1959) it can be concluded that 
there exist constants B > 0 and 8 < 1 such that H (  b )  G where 8 = 0.456 733 . . . . 
This, along with equation (3.8), gives equation (3.5). 

The functional form of f ( n )  is not known but equation (3.5) can be simplified by 
replacingf(n) by an upper bound. We obtain a simpler form for equation (3.5) using 
the following lemmas. 

Lemma 3.3. Suppose that g ( n )  is a twice differentiable function and g”(n) < O  for all 
n. If f ( n )  < eg(”)  for n E 2, then 

Proof: g( n )  is a function of n with g”( n )  < 0 and therefore by convexity 

max 
{n ,p :_d3( f - l )n ,=b-2}  (2d  -3)! 

(3.10) 

(3 .11)  

Equations (3 .9 ,  (3.10) and (3.11) together withf(n) < eg(”)  give equation (3.9). 
We now use lemma 3.3 and an appropriate upper bound on f ( n )  to obtain an 

upper bound on U,,@). This upper bound along with equation (3.2), where p =  
(2d  - 1 ) a  + 2 / n ,  gives an upper bound on t , (  a, G )  and then taking logarithms, dividing 
by n and letting n go to infinity gives the following lemma. 
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Lemma 3.4. For 

a s  - - 
(1 +“,) 2;- 1 

where 

q = (eK/2de)[(2d - 1)(2d -2)]’i2 

we have 

1 0 g h o ( a ) c K + x { ( 2 d - 1 ) ( Y [ 1 + ( 2 d - l ) c Y ] } ’ i 2 + ( 2 d - l ) a  lOg[l+(2d-1)Lu] 

-2(2d - 1 ) a  log(2d - l)a 

- [1- (2d- l )a ]  log[ l - (2d- l )a ]  

+ ( 2 d - l ) a  log(&(2d eK -1)(2d-2)]1/2 
(3.12) 

while for 

a* =min{cr, 1/(2d - 1)) 

we have 

l O g A o ( a ) ~ K + 7 T { ( 2 d - 1 ) L Y * [ 1 + ( 2 d - 1 ) ~ * ] ) ” * + ( 2 d - l ) ~ *  l O g [ 1 + ( 2 d - l ) ~ ~ * ]  

(3.13) 

- (2d - l )a* log[ (2d- l )a*]+log  1+---[(2d-1)(2d-2)]’/2 ( 2eB8 
where K is the connective constant for self-avoiding walks. 

ProoJ: Since an exact equation for f( n) is not known we use the upper bound on f( n )  
derived by Hammersley and Welsh (1962). We use their bound in the following form: 

(3.14) 

where pD( r )  is the number of partitions of r into distinct integers or, equivalently, the 
number of partitions of r into an odd number of parts. Following Hua’s (1982) proof 
that the number of partitions of n is less than e x p [ ~ ( 3 n / 2 ) ’ / ~ ] ,  it can be shown that 

pD( r)  exp[ x (  r/2) I i 2 I  (3.15) 

for all finite r. Therefore we have from equation (3.14) that 

The sum over r in equation (3.16) attains its maximum for r = ( n  + 1)/2 and therefore 

(3.17) 

We let the logarithm of the right-hand side of equation (3.17) be g (  n) in lemma 3.3, i.e. 

f(n) s exp[(n + I ) K ] (  n + I )  exp[ x ( n  + I)’/’]. 
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(3.18) 

We therefore have that 

pn B ( n  - 2 ) (  (2d - 1)!)(b-2)'2 
U n ( P ) s z 2  Bb(2d)b-2 b - 2  (2d-3)!  

x(exp[( n + b - 2  6-1  ) K + T (  n + b - 2  b - l  ) " 2 + l o g ( E + l ) ] ] b - ' .  (3.19) 

Note that the functions [ ( n  - 1)/( b - 1) + 13 b-l  and exp{ T [  ( 6  - 1)( n + b - 2)] ' I 2 }  are 
both increasing functions of b for b s n and hence we can replace them by their value 
at the maximum b value and obtain 

U,@) s ( B I B 2 )  exp{nK + ~ [ ( n  + p n  -2)(pn - 1)]'12 

+ ( P n - l )  l og [ (n+pn-2 ) / (pn - l ) l )  

(3.20) 

We consider two different ranges of /3 and in each case bound the right-hand side 
of equation (3.20). These two ranges are for p E [0, q / (  1 + 4 ) )  and p E [ q / (  1 + q ) ,  13 
where q = (eK/2dB)[(2d - 1)(2d -2)]''2. 

For the first case, 0 S p S q / (  1 + q ) ,  it can be proved that for any q such that 0 < q < CO 

k = O  
(3.21) 

To prove this, define p = q / (  1 + q) .  Thus we have that 0 < p < p < 1 and the left-hand 
side of equation (3.21) can be rewritten as Zf lo(z)pk( l  - P ) " - ~ .  Let X be a binomial 
random variable with parameters n and p .  Then Zc!., ( t ) p k (  1 - p )  - Pr(X s p n ) .  
Define the random variable 2 which is 1 if X s p n  and 0 otherwise. Then 2s 
exp[t(pn -X)]  for any t 20 ,  so that 

n - k  - 

Pr{X s p n }  = E ( 2 )  

S E(exp[t(Pn - X ) N  
= e'P"E(e-'X) 

= e'P"(p e - '+ 1 - p ) " .  (3.22) 

The last expression in equation (3.22) is minimised (over t )  when p (  1 - p )  = p (  1 - P)e-'; 
for this value of t, we obtain 

k = O  1 - P  
(3.23) 

(Note that if we take nth roots and let n +CO in equation (3.23), we obtain equality 
(Cram& 1937).) Substituting p = q / (  1 + q )  into equation (3.23) gives equation (3.21). 

Substituting equation (3.21) into equation (3.20) gives for O S  p s q / (  1 + q ) :  
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For the second case, note that the function summed over b in equation (3.20) takes 
its maximum for b = [ q / (  1 + q)]n and therefore for q / (  1 + q )  s p s 1 using equation 
(3.20) we obtain 

(3.25) 

Taking logarithms, dividing by n and letting n +CO in equations (3.24) and (3.25) gives 
for cases 1 and 2 respectively: 

lim ( l / n )  1% 
n e x  

s K + T[(l  +p)p]”’+p log( 1 + p ) - 2 p  log p 

(3.26) 

(3.27) 

For a S 1/(2d - l ) ,  tn(a,  s )  s u,( l )  and for a < 1/(2d - l ) ,  as in equation (3.2), 
rn(a, s )  s un[(2d - 1 ) a  + 2 / n ] .  Therefore taking logarithms, dividing by n and letting 
n + m ,  we havethat for a z 1 / ( 2 d - 1 ) ,  l o g A o ( a ) ~ l i m n ~ , ( l / n ) l o g u n ( l )  and for a <  
1/ (2d- l ) , log  A o ( a ) ~ l i m n + x ( l / n )  log ufl[(2d-1)a].  F o r a s [ q / ( l + q ) ] [ l / ( 2 d - l ) ]  
equation (3.26) with p = (2d - l ) a  gives equation (3.12), for [ q / ( l +  q)][1/(2d - l ) ]  < 
a < 1/(2d - 1) equation (3.27) with p = (2d - 1)a gives equation (3.13) where a* = a 
and for a 3 1/(2d - 1) equation (3.27) with p = 1 gives equation (3.13) where CY* = 

An upper bound for K on the two-dimensional square lattice is available from 

eK < 2.712. (3.28) 

A lower bound on A. for the two-dimensional square lattice is available from Whitting- 
ton and Gaunt (1978): 

A 0  3 4.3486. (3.29) 

The bound on K together with equation (3.13) allows us to determine a lower bound 
on the first value of a for which Ao(a)  = A o .  This value of a is bounded below by the 
first value of a for which our upper bound on Ao(a)  equals the lower bound on A. in 
equation (3.29). This value of a is a lower bound on needed in equation (2.22). 
The result for the two-dimensional lattice is that E > 0.003 899. If, instead of using the 
bounds on A. and K,  as in equations (3.28) and (3.25), we use the series estimates 
Ao=5.14 (Gaunt er a1 1982) and e“Z2.6381 (Sykes et a1 1972) then we obtain 
eo> 0.006 958. Equation (2.19) and equation (2.23) with E replaced by (0.003 899)/5 
give upper and lower bounds on A ( a )  for small a. 

1/(2d - 1). 

Fisher and Sykes (1959): 
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4. Properties of c$(cr) 

In this section we shall investigate the function 

4 ( a )  = lim a,( [an])”” 
n - m  

(4.1) 

beginning with the existence of the limit. Some fundamental properties of C#J including 
log concavity and continuity will then be proved in a series of lemmas. 

Lemma 4.1. For OG a < d - 1,  a,( [an I)’’, exists. 

Proof: The result is true for a = 0 by equation (1 .3)  and we therefore only consider 
O <  a < d - 1 .  The usual concatenation argument (cf lemma 2.2) implies 

an( [anl)am( [ami) an+m( [an] + [ a m ] ) .  (4.2) 

There are two possibilities. 
(a) [an1 + [ a m ]  = [ a ( n  + m ) l .  Then a,( [anl)am( [am]) 6 an+*( [ a ( n  + m ) l ) .  
(b) [ a n l + [ a m l =  [ a ( n + m ) l + l .  By equation (2.11) of lemma 2.3 with k = l ,  

we know 

so in both (a) and (b) we find 

d - 1  
an([anl)am(Taml)“- a a ,+ , ( [ a (n+m) l ) .  (4.4) 

Thus, submultiplicativity, together with the fact that a,( [an 1 ) ” ”  d A ,  implies that 

exists. The lemma follows. 

Now that lemma 4.1 is proved, we shall take (4.1) as the dejnition of 4 ( a )  for 
O G a < d - l ;  we also define 4 ( d - 1 ) = 1 .  

Lemma 4.2. For O <  E < d - 1 

(d + E ) ~ + ‘  
+ ( d - - l - & ) d  

( d  -E)d-E(2E)2” 

This implies 

lim 4 ( a ) = l .  
m - . ( d - l ) -  

(4.5) 

(4.6) 

Proof: Consider an animal with [n(d-1 - E ) ]  cycles and n vertices. Then e =  
[nd - ne - 11 is the number of edges, and by counting edge-vertex incidence pairs one 
sees that there are at most 2nd - 2e = 2 [ne 1 + 2 ‘boundary edges’ (edges which are not 
in the animal but have at least one endpoint in the animal). Let u , , ~ , ~  be the number 
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of animals with n vertices, e edges and i boundary edges. Then by arguing as in 
Kesten (1982, lemma 5.1) for the edge-percolation model, we find 

(4.7) 

Since a,( [n(d - 1 - E)]) = Z:iY'+2 u , , ~ , ~ ,  taking nth roots in the above inequality and 
using (4.1), we obtain 

4 ( d  - 1 - E )  s [pd-'(l -p)*']-' O < p < l .  (4.8) 

The right-hand side is minimised when p = (d - e)/(d + E) ,  which gives (4.5). 

Lemma 4.3. 

d - 1  d -1  (4.9) 

for O S a S / 3 < d - l ,  where I ( t ) = t ' ( l - t ) l - ' , O < t < l  and I(O)=I(l)=l.  That is, 
+ (a ) [ I ( a / (d  - 1))]"-' is monotone decreasing for O s  a s d - 1. 

Proof: Let 

For 0 s a < P < d - 1, put c = [an 1 and k = [Pn 1 - c in equation (2.10); then take nth 
roots and let n+m.  Using lemma 2.4 we obtain @(a)S@(P) ,  so @ ( a )  is monotone 
decreasing for O S  a < d - 1. By (4.6), l ima+(d-l)-@(a) = 1, and @(d - 1) = 1, so the 
result follows. 

The monotonicity of @ and the continuity of I imply that all one-sided limits of 4 
exist, and that 

4 ( a - )  3 + ( a ) >  4 ( a + ) .  (4.10) 

Lemma 4.4. 4 is log concave and continuous on [0, d - 11. 

Proof: For a, p E [0, d - 1) 

a,( [anl)a,(  [Pnl )<  a*,( [an1 + [Pnl) 
by the usual concatenation argument. There are two possibilities. 

(a) [ a n ] +  [Pn1= [ (a+P)nl .  
(b) [ a n ] +  [ P n l =  [ ( a + P ) n l + l ,  in which case (by equation (2.11)) 

In both cases, we find 

(4.11) 

(4.12) 

(4.13) 
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Take nth roots and let n + C O ;  this gives 

(4.14) 

+ ( a )  is a bounded function on [0, d-1) so (4.14) implies (Hardy et a1 1934, 0 3.18) 
that log 4 is concave on [0, d - 1) .  The definition +(a' - 1 )  = 1 and (4.6) imply concavity 
on [0, d - 11.  

Concavity implies continuity on (0, d - 1) and +(O) s +(O+); continuity at 0 and 
d - 1 follows from (4.10) and (4.6). 

Lemma 4.5. If 0 S y S d - 1 ,  and c, is a sequence of integers such that 0 s c, 6 cmax( n )  
and limn+m (c,/n) = y, then l imn+m(an(cn)) ' /n exists and equals +(y) .  

Proof: Suppose 0 s  c, S c,,,(n) and lim,&c,/n) = y. The proof is in two parts, 
showing respectively 

4 (  y)  s iim inf a,( c,)'/" (4.15) 
n+;o 

and 

limsup a , , ( c , ) " " ~ ~ ( y ) .  
n-m 

(4.16) 

( i )  First, for y =  d - 1, (4.15) is immediate since 4 ( d  - 1 )  = 1 .  
If O s y < d - l  let p ~ ( y , d - l ) .  Then taking c=c ,  and k = k , =  [pnl-c ,  (for n 

(4.17) 

large enough so that k, > 0) in inequality (2.1 l ) ,  we find 

C b f l  ( FPn 1) s r ( d  - 1 )nI k"an ( c,) 

(4.18) 

Let p decrease to y; then, using lemma 4.3, equation (4.15) is true. 

follows. 

enough so that j ,  > 0) in inequality (2.1 l ) ,  so that 

(ii) For y = 0, equation (2.11) implies a,(c,) S [ ( d  - l)n]'~~a,(O) from which (4.16) 

If O <  y s  d - 1 let a E (0, y). Then take c =  [ a n ]  and k =j ,  = c, - [ a n ]  (for n large 

(4.20) ( a n  )'it a, (c, ) s [ ( d - 1 ) n 1 ' 9 3  a,, ( [an  1 ) 
and thus 

a'J"a,(c,"'"S(d- l ) jJna, (  [an] ) ' ?  (4.21) 

Letting n +CO, and then letting a increase to y, gives equation (4.16). 

We close this section with some more properties of 4. Recall the definitions of A ( a )  
and a. from equations (1 .7)  and (1.10). 

Theorem 3. ( i )  4 ( a )  = A ( & )  for a s ao. 
(ii) a 0 s  (d - 1)/2. 
(iii) The (one-sided) derivatives of 4 and log 4 at 0 are -too, and at d - 1 are -W. 
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Proof: ( i )  Fix a s cyo. Let c, be the c in {0,1,. , . , [ a n ] }  which maximises a,(c). Then 

(4.22) a,( c,) s a,( a, s )  s ana, (c , )  

so we find from lemma 4.4 that 

4 ( a ) ~ A ( c u ) ~ s u P { 4 ( y ) I O s y ~ a }  (4.23) 

for all a s ao.  This implies that cyo = sup{a I4( a )  s A}. Using lemma 4.4, we see that 
4 is strictly monotone increasing on [0, cy0]. The result ( i )  now is immediate from 
equation (4.23). 

( i i )  The last statement of lemma 2.3 implies that 4 is decreasing on [ (d-1)/2,  
d - 11, from which (ii) follows. 

( i i i )  For the right-hand derivative of log +(CY) (and then of qb(a), via the chain 
rule) at a = 0, divide (2.23) by a and let a + 0 (using part ( i )  above). 

For the left-hand derivative at a = d - 1, putting ,f3 = d - 1 in lemma 4.3 and taking 
logarithms gives 

log + ( d  - 1 - a )  log( d - 1 - a )  - ( d  - 1) log( d - 1) 3 log qb(d - 1) -log 4 (  a ) .  
(4.24) 

Divide by d - 1 - a and let a increase to d - 1, obtaining --a3 on the left. 

5. Properties of the z transform 

In this section we shall present some properties of the function R(z), defined by 
equations (1.11) and (1.12). Since we are only interested in non-negative z, we will 
often write z = ep. 

The first lemma includes some of the more elementary properties. We shall then 
prove the Legendre transform relationship, equation (1.13), which will then yield some 
additional results. 

Lemma 5.1. The limit in equation (1.12) exists, so A(z)  is well defined for all z 2 0 ,  
and has the following properties: 

( i )  h ( 0 )  = A o ,  h(1) = A ;  
( i i )  R ( z )  is an increasing function of z; 
( i i i )  log A( z) s log A + ( d  - 1) log z for all z S 1; 
( i v )  log A(eP) is a convex function of p ;  
(0) A(z) is continuous for z 3 0. 

Remark 1 .  Later in this section we shall show that A(z) is actually strictly increasing. 

Proof: The existence of the limit will be proven, as usual, by subadditivity arguments. 
A straightforward concatenation argument gives Z:=, a,( i)a,(c - i )  s an+,,,( c), from 
which we obtain 

An(z)Am(z) sAn+m(z).  (5.1) 

To complete the argument, we need upper bounds on A,(z). For 0 6  z S 1 we have 
A,(z)sa,sA",  and for z 3 l  we have 

( d - I ) , - I  

c = o  
A,(z)s a,z" s ( d  - l)nAnz(d-l)n (5 .2 )  



Statistics of lattice animals 4633 

Thus, for each z 20 ,  ( l / n )  log A,(z) is a bounded function of n. With equation (5.1) 
this shows that the limit in equation (1.12) exists and is finite for all z 2 0. 

( i )  is immediate and ( i i )  follows from the monotonicity of A,(z). (iii) follows 
from equation (5.2). 

Holder’s inequality gives A, (exp[Ap,+ (1 - A ) & ] )  s [A,(eP~)]^[A,(eP2)]’-^ for 
O S A  s 1, and real pl, p 2 ;  (iu) is an immediate consequence. Convexity implies 
continuity for all p, so to prove ( U )  we only need to investigate continuity at z = 0. 
First, observe that for O < z < l  and O<a < a o ,  A , ( O ) s A , ( z ) s  a,(a, s)+u,zOLn and 
therefore log h ( z )  s max(1og A ( a ) ,  a log z + log A}. Letting z decrease to 0, we find 

A(0) s l i q  A(z) 6 A ( a )  (5.3) 
2-0 

for all a in (0, ao). Finally, A(0) = A ( O ) ,  so ( U )  follows from equations (5.3) and (2.20). 

Theorem 4. For all z >  0, log h ( z )  = SUPOGaGd-l(log $ ( a ) +  a log z). 

ProoJ: For any a in [0, d - l ) ,  we have A(z) 2 lim,,,[u,( [an l)~‘”“’]’’“ = #(a)zOL and 
hence, by continuity at a = d - 1, we have 

l o g A ( z ) 2  sup ( l o g $ ( a ) + a  logz).  
O c a s d - 1  

(5.4) 

For the reverse inequality, fix z, and for each n, define c, to be any integer c for which 
un(c)zc is maximised. Then A ( z ) s l i m  inf,,,[(d - l ) n a , ( ~ , ) z ~ n ] ” ~ .  There exists a p 
in [0, d - 11 which is the limit of some subsequence c,,/nk ; then lemma 4.5 implies 
A(z) S +(p)z”. In conjunction with equation (5.4), this proves the theorem. 

The next two corollaries are fundamental properties of Legendre transforms (e.g. 
Ellis 1985, theorem V1.5.3). First, we require one definition. Let f :  R + (-CO, +CO] be 
a convex function. The subdifferential o f f  at the point y is defined to be a f ( y )  = 
{ Z E  R :  f ( x ) - f ( y ) z z ( x - y )  for all x}. Observe that i f f  is differentiable at y, then 
d f ( y )  = {f’(y)}. For example, i f f (x)  = 1x1, then af(-3) = (-1) and af(0) is the interval 
[-I, 11. 

Corollary 1. For 0 s  a 4 d - 1, log $ ( a )  = inf,,o{log A(z) - a log z}. 

Corollary 2. log A( z) = log $ ( a )  + a log z if and only if log z is in the subdiff erential 
of -log 4 ( a ) .  

Corollary 3. h ( z )  is strictly increasing for z 2 0. 

ProoJ Let H ( p )  = log A(eP); it suffices to prove that H ( p )  is strictly increasing. 
For any finite p, the function log c$( a) + ap is not maximised at LY = 0 (by (iii) of 

theorem 3), so H ( p ) > l o g  4(0) for all finite p. But lemma 5.1 tells us that 
H ( P )  =log 4(0) and that H ( P )  is convex, so it follows that H ( P )  is strictly 

increasing. 
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Corollary 4. limz+m log h(z)/log z = d - 1. 

Proof: For each z, let a ( z )  be the smallest a such that log z is in the subdifferential 
of -log 4 ( a ) ;  then logA(z)/log z=log 4 (a (z ) ) / l ogz ]+a (z ) .  Part ( i i i )  of theorem 3 
implies that limz+m a ( z )  = d - 1, so the corollary is proven. 

6. Discussion 

Although there has been renewed interest in the lattice animal problem since Lubensky 
and Isaacson (1979) proposed this as a model of branched polymers, there have been 
relatively few rigorous results. Of course, there has been substantial progress in the 
rigorous theory of percolation (Kesten 1982) and lattice animals are closely related to 
percolation clusters. However, the associated weights are different in the two problems. 
The primary purpose of this paper is to prove a set of rigorous results on the animal 
problem. 

The results of this paper are summarised schematically in figure 2. The general 
properties obtained by us for the three functions A ( a ) ,  4(  a) and A( z) are illustrated 
and the relationships between the three functions can be seen. 

l og  2 

Figure 2. Expected behaviour of the functions A(@), +(a) and A(z) .  
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One motivation for this work is the connection with the collapse transition in 
branched polymers (Dickman and Schieve 1986, Lam 1987). In this regard many 
problems remain to be addressed. Is the function h ( z )  analytic? If not, there is a 
collapse transition. Is +(a) strictly concave? If not, then h ( z )  is not differentiable 
and there is a first-order phase transition. In particular, is the maximum value in +(a) 
attained at a unique point? If not, there is a collapse transition, but at z = 1, i.e. at 
‘infinite temperature’. These are difficult problems which we feel are worthy of 
attention. 

Acknowledgment 

This work was financially supported by NSERC of Canada. 

References 

Berge C 1962 The Theory of Graphs and its Applications (London: Methuen) 
Bersohn M 1978 Comput. Chem. 2 113 
Cram& 1937 Colloquium on the Theory of Probability (Paris: Hermann) 
Dickman R and Schieve W C 1986 J. Stat. Phys. 44 465 
Ellis R S 1985 Entropy, Large Deviations and Statistical Mechanics (Berlin: Springer) 
Feller W 1950 An Introduction to Probability Theory and Its Applications vol I (New York: Wiley) 
Fisher M E and Sykes M F 1959 Phys. Rev. 114 45 
Gaunt D S 1980 J. Phys. A :  Math. Gen. 13 L97 
Gaunt D S, Sykes M F, Torrie G and Whittington S G 1982 J. Phys. A :  Math. Gen. 15 3209 
Hammersley J M and Welsh D J A 1962 Q. J. Math. Oxford 13 108 
Harary F and Prins G 1959 Acta Math. 101 141 
Harary F, Robinson R W and Schwenk A J 1975 J. Ausr. Math. Soc. A 20 483 
Hardy G H, Littlewood J E and P6lya G 1934 Inequalities (Cambridge: Cambridge University Press) 
Hua L K 1982 Introduction to Number Theory (Berlin: Springer) 
Kesten H 1982 Percolation Theory for Mathematicians (Basle: Birkhauser) 
Klarner D A 1967 Can. J. Math. 19 851 
Klein D J 1981 J. Chem. Phys. 75 5186 
Lam P M 1987 Phys. Rev. B 36 6988 
Lipson J E G and Whittington S G 1983 J. Phys. A :  Math. Gen. 16 3119 
Lubensky T C and Isaacson J 1979 Phys. Rev. A 20 2130 
Soteros C E and Whittington S G 1988 J. Phys. A :  Math. Gen. 21 2187 
Sykes M F 1972 J. Phys. A :  Math. Gen. 46 871 
Whittington S G and Gaunt D S 1978 J. Phys. A :  Math. Gen. 11 1449 
Whittington S G, Torrie G M and Gaunt D S 1983 J.  Phys. A :  Math. Gen. 16 1695 


